Benha University

Electrical Engineering Department

Faculty of Engineering (at Shoubra)

Lab 03

Getting Started

1. Start MATLAB
2. On the HOME tab, in the ENVIRONMENT section, click \square Layout, then Default. ${ }^{1}$

3. Consider the Command Window.

Command Window	(1)
(i) New to MATLAB? Watch this Video, see Examples, or read Getting Started.	\times
$f_{\sim}^{x} \gg 1$	

Vectors

4. Ten students in a class take a test. The marks are out of 10 . All the marks are entered in a MATLAB vector, marks. Write a statement to find and display the average mark.
Try it on the following: 58010385794

5. What are the values of x and a after the following statements have been executed?
```
a = 0; i = 1; x = 0;
a}=a+i
x = x + i / a;
a = a + i;
x = x + i / a;
a = a + i;
x = x + i / a;
a = a + i;
x = x + i / a;
```

\qquad

``` x =
``` \(\qquad\)
``` 0
``` \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
```

a =

```
a =
a = a + i;
a = _--------------- x =

 a = ----------------- x
 a = ----------------- x
 x =
 x =

 a = _---------------------------------
 a = _---------------------------------
 a = _--------------------------------
 a = _--------------------------------

```

    -----------------
    ```

\footnotetext{
1 You may like to try other Layout options.
}

Benha University

\section*{Summer Training I MATLAB for Engineers}

Computer Systems Engineering
Electrical Engineering Department

Faculty of Engineering (at Shoubra)

\section*{Loops}
6. Rewrite the statements in the previous exercise more economically by using a for loop. Can you do even better by vectorizing the code?

7. Work out by hand the output of the following script for \(n=4\) :
```

n = input( 'Number of terms? ' );
k = 1, s = _--0+1/12=1
s = 0;
for k = 1:n
s = s + 1 / (k ^ 2);
end;
k
k = 4, s =
disp(sqrt(6 * s))

```
8. If you run this script for larger and larger values of n , you will find that the output approaches a well-known limit. Can you figure out what it is? Now rewrite the script using vectors and array operations.

Benha University

\section*{Summer Training I MATLAB for Engineers}

Computer Systems Engineering Electrical Engineering Department

Faculty of Engineering (at Shoubra)

\section*{Applications}
9. The steady-state current I flowing in a circuit that contains a resistance \(R=5\), capacitance \(C=10\), and inductance \(L=4\) in series is given by
\[
I=\frac{E}{\sqrt{R^{2}+\left(2 \pi \omega L-\frac{1}{2 \pi \omega C}\right)^{2}}}
\]
where \(E=2\) and \(\omega=2\) are the input voltage and angular frequency, respectively. Compute the value of \(I\).

10. The electricity accounts of residents in a very small town are calculated as follows:
- If 500 units or fewer are used, the cost is 2 cents per unit.
- If more than 500 but not more than 1000 units are used, the cost is \(\$ 10\) for the first 500 units and 5 cents for every unit in excess of 500 .
- If more than 1000 units are used, the cost is \(\$ 35\) for the first 1000 units plus 10 cents for every unit in excess of 1000 .
- A basic service fee of \(\$ 5\) is charged, no matter how much electricity is used.

Write a program that enters the following five consumptions into a vector and uses a for loop to calculate and display the total charge for each one: \(200,500,700,1000,1500\).

Benha University

\section*{Summer Training I MATLAB for Engineers}

\section*{Computer Systems Engineering Electrical Engineering Department}

Faculty of Engineering (at Shoubra)
11. A mortgage bond (loan) of amount \(L\) is obtained to buy a house. The interest rate \(r\) is \(15 \%\). The fixed monthly payment \(P\) that will pay off the bond loan over \(N\) years is given by the formula
\[
P=\frac{r L(1+r / 12)^{12 N}}{12\left[(1+r / 12)^{12 N}-1\right]}
\]
a) Write a program to compute and print P if \(\mathrm{N}=20\) and the bond is for \(\$ 50,000\). You should get \(\$ 658.39\).
b) See how \(P\) changes with \(N\) by running the program for different values of \(N\) (use input). Can you find a value for which the payment is less than \(\$ 625\) ?
c) Go back to \(N=20\) and examine the effect of different interest rates. You should see that raising the interest rate by \(1 \%(0.01)\) increases the monthly payment by about \(\$ 37\).
```

